NVCAU2014

Using WRC 107 and NozzlePRO FEA

Presented by: Ray Delaforce

History of WRC 107

Pressure vessel analysis was handled by the codes, such as:

- ASME Section VIII, Division 1
- ASME Section VIII, Division 2
] PD 5500 (British Code)
- EN 13445 (European Code)
- AD 2000 (Merkblatter) (German Code)
\square CODAP (French Code)
They mainly concentrated on primary membrane stresses (more later)
These stresses had to be below the yield stress of the metal
The strain is not to exceed about $\mathbf{0 , 2 \%}$

History of WRC 107

Example of membrane stress in a cylinder subject to internal pressure
The code allowable stress is about here, below yield
In the case of nozzles subject to external loads, the stresses can be here
That is beyond the scope of the codes
Strains go beyond 0,2\%

History of WRC 107

Stress analysis is really required

WRC107 was published for this purpose

WRC107 offered a graphical method of doing the stress analysis

Here is a typical graph:

History of WRC 107

Stress analysis is really required
WRC107 was published for this purpose
WRC107 offered a graphical method of doing the stress analysis
Here is a typical graph:
Many of the graphs are difficult to read - more of that later
WRC107 first published in 1965

- Revised 1968
- Revised 1970
- Revised 1972
- Revised 1979

Based upon the theoretical work of Prof. Biljaard of Cornell University Attachments (nozzles) on cylinders and spheres only can be analysed There are also geometric limitations Using WRC 107 is very tedious and time consuming PV Elite and CodeCalc make this analysis simple and fast

Let us look at some principles of stress analysis
Consider a bar subject to a tensile force

Once the stress passes yield, it continues to stretch until collapse occurs
So, we could re-label the strain axis as time to collapse
This shows we must under normal conditions stay below yield

Let us look at some principles of stress analysis
Suppose the force were delivered by this arrangement

If the weight were heavy enough - fracture would occur
The stress is directly proportional to the load
$\sigma=$ force / area thus stress is directly related to the load (force)

Let us look at some principles of stress analysis
$\sigma=$ force / area thus stress is directly related to the load (force)

By definition this is a Primary Stress

- The Internal stress is directly related to the external load
\square Fracture will occur as the stress increases beyond yield
The stress also exist Everywhere in the bar - membrane stress
E Everywheredesignates the stress as a General Stress
- Therefore we have a General Primary Membrane stress

Let us look at some principles of stress analysis
Suppose now we have table under the weight to restrict its movement

Stress does not reach fracture, because movement is limited
The weight is NOT related to the stress. Only to the movement

Let us look at some principles of stress analysis
The weight is NOT related to the stress. Only to the movement

This is known as Secondary Stress

- Controlled by movement of another element
\square Internal stress not related to the force in the other component
\square Also called strain related

Let us look at some principles of stress analysis
Now we consider a Cantilever subject to un-restricted force
There is an internal bending stress in the beam
This bending stress can exist everywhere at this location

This stress has the following characteristics
The internal stress is directly related to the load - Primary

- It exists Everywhere -General

This is a General Primary Bending stress

Let us look at some principles of stress analysis
We again restrict the motion of the weight
The bending stress is NOT directly related to the load (weight)
The bending strain is restricted, and does not proceed to fracture
It is strain controlled, and not load controlled

We have a Secondary bending stress

Let us look at some principles of stress analysis Now look at this arrangement The rod is heated, so it expands

Again the stress is controlled by the strain

This is also a Secondary stress - also called an Expansion stress

Let us look at some principles of stress analysis
Sum up what we have learned so far:
Primary stress
Secondary stress
Directly related to the imposed load: eg $\sigma=F / A$

If the load is great, failure can occur

Relate to the strain induced in the component - strain controlled

The strain is restricted so failure does not occur

Often from expansion of another component example, thermal expansion

There is one more stress category we have deal with

Let us look at some principles of stress analysis
Consider a nozzle in a shell subject to an external moment
The shell deforms to accommodate the moment like this
Notice how it pulls the shell to the left, giving rise to a membrane stress
This stress fades away rapidly from the nozzle to shell junction

Let us look at some principles of stress analysis
Consider a nozzle in a shell subject to an external moment The shell deforms to accommodate the moment like this
Notice how it pulls the shell to the left, giving rise to a membrane stress
This stress fades away rapidly from the nozzle to shell junction
That stress does not exist everywhere, therefore it is LOCAL
This is a Local Primary Membeane stress

${ }_{16}$ The bending stress is treated as Secondary stress

Let us look at some principles of stress analysis Summing what we have learned so far:
ASME Section VIII, Division 2 gives them symbols
These stresses can exist in combination

Stress type
General Primary Membrane

Local Primary Membrane

Primary Bending

Symbol

$$
\mathbf{P}_{\mathrm{m}}
$$

\mathbf{P}_{L}
\mathbf{P}_{b}

Q

Secondary:
\square Local Membrane
\square Local Bending

Allowable stress

1,5S

1,5S
$\mathbf{3 S}$ or $\mathbf{2 S}{ }_{y}$

Let us look at some principles of stress analysis Summing what we have learned so far: ASME Section VIII, Division 2 gives them symbols

These stresses can exist in combination

Stress type	Symbol	Allowable stress
Primary	P_{m}	\mathbf{S}
Primary + Local	$P_{m}+P_{L}$	$\mathbf{1 , 5 S}$
Primary + Local	$P_{m}+P_{L}+P_{B}$	$\mathbf{1 , 5 S}$
Primary + Local + Secondary	$P_{m}+P_{L}+P_{B}+\mathbf{Q}$	3S of $2 S_{y}$

Let us look at some principles of stress analysis

This is the 'Hopper' diagram from ASME Section VIII, Division 2

WRC 107 Force and Moment Convention
Nozzle removed - here is the hole Labeling convention

U = upper surface (outside)
L = lower surface (inside)

$\begin{array}{lc}\text { Radial force } & \mathbf{P} \\ \text { Longitudinal force } & \mathbf{V}_{\mathbf{L}} \\ \text { Circumferential force } & \mathbf{V}_{\mathbf{C}}\end{array}$ Longitudinal moment $\quad \mathbf{M}_{\mathbf{L}}$ Circumferential moment $\mathbf{M}_{\mathbf{C}}$ Torsional moment M_{T}

Type of Loading per normal stress analysis
Sustained load
L Loads that are there for long periods

- Pressure
\square Weight (on an attachments)
Occasional
L Loads that are momentary (lasting a short time)
- Wind loading
- Seismic loading
- Because they are short lived - add 20\% to allowable stress

Expansion

- Strain controlled
- From thermal expansion of piping
- Always Secondary Stresses

Operating loads

- These are commonly Sustained + Thermal (eg: CAESAR II)

WRC 107 Demonstration (First)

Here are the regions around the nozzle
Stresses in the Vessel at the Attachment Junction

Type of	$\underset{(\mathrm{MPa}}{\mathrm{Stress}} \mathrm{Values}$) ${ }^{\text {at }}$							
Stress Load	Au	Al	Bu	B1	Cu	Cl	Du	D1
Circ. Memb. P	-24	-24	-24	-24	-19	-19	-19	-19
Circ. Bend. P	-58	58	-58	58	-90	90	-90	90
Circ. Memb. MC	0	0	0	0	-7	-7	7	7
Circ. Bend. MC	0	0	0	0	-107	107	107	-107
Circ. Memb. ML	-23	-23	23	23	0	0	0	0
Circ. Bend. ML	-46	46	46	-46	0	0	0	0

Here are the final stress final stress Categories

WRC 107 Does not discuss Pressure Thrust on the nozzle

Thrust $\mathrm{F}=\mathrm{P} \pi \mathrm{d}_{\mathrm{o}}{ }^{2} / 4$, this can be added in PV Elite (Demo)
Before After

Type of Stress Int.	Max. S.I. MPa	Type of Stress Int.	Max. S.I.
Pm (SUS) \|	94.38	Pm (SUS)	94.38
Pm (SUS+OCC) \|	94.38	Pm (SUS+OCC)	94.38
Pm+Pl (SUS)	93.82	Pm+Pl (SUS)	128.14
Pm+Pl (SUS+OCC) \|	84.03	Pm+Pl (SUS+OCC) \|	118.34
Pm+Pl+Q (TOTAL) \|	349.95	Pm+Pl+Q (TOTAL) \|	253.52

There is a stress concentration at the Nozzle to Shell junction
The stress increases at the junction like this:

S_{A} is the average stress, S_{C} is the increases stress
$\mathrm{S}_{\mathrm{C}} / \mathrm{S}_{\mathrm{A}}$ is known as the stress concentration factor (scf)
It is usually about 3
ASME VIII, Division 2 calls the scf by the name of Pressure Index

Adding the scf (Pressure Indices) - (Demo)

It now FAILS, we can fix the problem be adding a re-pad (Demo)

Type of Stress Int.	Max. S.I. MPa	S.I. Allowable	1	Result
Pm (SUS)	301.89	137.97	\|	Failed
Pm (SUS + OCC)	301.89	165.56	\|	Failed
Pm+Pl (SUS) \|	326.16	206.95	\|	Failed
Pm+Pl (SUS+OCC) \|	318.45	248.34	\|	Failed
Pm+Pl+Q (TOTAL) \|	348.96	413.91	1	Passed

We now have two analyses

Nozzle junction

Edge of the pad

WRC107 deficiencies

It only considers 4 points around the nozzle

The method is only an approximation
We need better tools to get a better answer
The answer is FEA!

Introduction to NozzlePRO FEA analysis

Now we set the same nozzle up in NozzlePRO (Demo)

What is a direction cosine?

Setting the nozzle-vessel in Global Units

$$
\begin{array}{lc}
\text { Radial force } & \mathbf{P} \\
\text { Longitudinal force } & \mathbf{V}_{\mathbf{L}} \\
\text { Circumferential force } & \mathbf{V}_{\mathbf{C}} \\
\text { Longitudinal moment } & \mathbf{M}_{\mathrm{L}} \\
\text { Circumferential moment } & \mathbf{M}_{\mathbf{C}} \\
\text { Torsional moment } & \mathbf{M}_{\mathbf{T}}
\end{array}
$$

Radial force $\quad \mathbf{P}$ is in the $+X$ direction
Longitudinal force $\quad \mathrm{VL}$ is in the -Y direction from B to A
Circumferential force VC is in the +Z direction from D to C

We need to know the Orientation of the Nozzle and the Vessel
$+x$ and $+y$ are known as Direction Cosines
We need to understand Direction Cosines

Let us construct a 3 dimensional world, or system
The axes can be thought of as the corners of a box

Label the $\mathbf{3}$ directions by the letters \mathbf{x}, \mathbf{y} and \mathbf{z}
A vector can be represented by an arrow from the origin
The vector can be represented by $\overline{\mathbf{r}}$, defines magnitude \& direction
The magnitude (length) is defined as $|\bar{r}|$, or simply r

What is a direction cosine?

These angles define the direction cosines

Now, put in the distances along the axes of the vector
The direction cosine of y is defined as $\cos \left(\varphi_{y}\right)=\frac{a_{y}}{r}$
Similarly $\cos \left(\varphi_{x}\right)=\frac{a_{x}}{r}$, and $\cos \left(\varphi_{z}\right)=\frac{a_{z}}{r}$

What is a direction cosine ?

Let the direction cosines be represented by $\mathbf{V x}, \mathbf{V y}$ and $\mathbf{V z}$
Then $\mathbf{V x}=\cos \left(\Phi_{\mathrm{x}}\right), \mathrm{Vy}=\cos \left(\Phi_{\mathrm{y}}\right)$ and $\mathrm{Vz}=\cos \left(\Phi_{\mathrm{z}}\right)$

z
Now, if $\mathbf{V y}=\mathbf{1}$, it follows that $\boldsymbol{\varphi}_{\mathrm{y}}=\mathbf{0}^{\circ}$ because $\cos \left(\mathbf{0}^{\circ}\right)=\mathbf{1}$
But, if $\mathbf{V x}=\mathbf{0}$, and $\mathrm{Vz}=0$, then $\boldsymbol{\varphi}_{\mathrm{x}}=90^{\circ}$ and $\boldsymbol{\varphi}_{\mathrm{z}}=9 \mathbf{9 0}^{\circ}$
The vector would then point in the direction of $+\mathbf{y}$

What is a direction cosine ?

Let the direction cosines be represented by $\mathbf{V x}, \mathbf{V y}$ and $\mathbf{V z}$
Then $\mathbf{V x}=\cos \left(\Phi_{\mathrm{x}}\right), \mathrm{Vy}=\cos \left(\Phi_{\mathrm{y}}\right)$ and $\mathrm{Vz}=\cos \left(\Phi_{\mathrm{z}}\right)$

Now, if $\mathbf{V y}=\mathbf{1}$, it follows that $\boldsymbol{\varphi}_{\mathrm{y}}=\mathbf{0}^{\circ}$ because $\cos \left(\mathbf{0}^{\circ}\right)=\mathbf{1}$
But, if $V \mathrm{X}=0$, and $\mathrm{Vz}=0$, then $\varphi_{\mathrm{x}}=90^{\circ}$ and $\varphi_{z}=90^{\circ}$
The vector would then point in the direction of +y

What is a direction cosine ?

Let the direction cosines be represented by $\mathbf{V x}, \mathbf{V y}$ and $\mathbf{V z}$
Then $\mathbf{V x}=\cos \left(\Phi_{\mathrm{x}}\right), \mathrm{Vy}=\cos \left(\Phi_{\mathrm{y}}\right)$ and $\mathrm{Vz}=\cos \left(\Phi_{\mathrm{z}}\right)$

If $\mathbf{V z}=\mathbf{0}, \mathbf{V x}=1$ and $\mathbf{V y}=0$, the vector would point along \mathbf{x} axis

What is a direction cosine ?

Then $\mathrm{Vx}=\cos \left(\Phi_{\mathrm{x}}\right), \mathrm{Vy}=\cos \left(\Phi_{\mathrm{y}}\right)$ and $\mathrm{Vz}=\cos \left(\Phi_{\mathrm{z}}\right)$

If $\mathbf{V x}=\mathbf{0}, \mathbf{V y}=\mathbf{0}$ and $\mathbf{V z = 1}$, the vector would point along \mathbf{z} axis

What is a direction cosine ?

We just set the direction cosine to $\mathbf{1}$ for the particular direction

