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Any physical vibrating system in motion is subject to Newton’s laws
A vibrating object has a maximum displacement called the amplitude A
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Any physical vibrating system in motion is subject to Newton’s laws
A vibrating object has a maximum displacement called the amplitude A
There is also a period (time) from cresttocrest T

The vibrating object also must have mass M
The elements have to satisfy Newton’s Second Law of motion
What is needed is the force F to act on this mass

A device that produces a cyclic force is a spring
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Consider first Newton’s Second Law of motion
Force = Mass x Acceleration, or F = M.a
Here is a mass on a spring, that has been displaced a distance x
There is a force in the upward (-ve) direction on the mass -F
If k is the spring stiffness, the forceis F = -k.x

% %
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Consider first Newton’s Second Law of motion
Force = Mass x Acceleration, or F = M.a
Here is a mass on a spring, that has been displaced a distance x
There is a force in the upward (-ve) direction on the mass -F
If k is the spring stiffness, the forceis F = -k.x
The acceleration is the second derivative of x, thus a ='x
From Newton’s law we can get the differential equation

F=M.a
ST~ |
-k.x = Mass x x (acceleration)

In the more familiar form:

MX + kx=0
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Basic concepts
MX + kx=0

The solution to this equation for the displacement x is:

X = A.sin(f%-.t)

AAANAN
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If you would like the derivation:

X + —x— Let x = Ae®! aZAe“t+Ae“t% =0 0+ k =0

M
o=Ii / X= Ae / t Thus: x=A.sin(J||:I:.t) + i.A.cos(J:: t)

But x does not contain a imaginary part thus: x = A.sin( /% t)



— N

MX + k.x=0

The solution to this equation for the displacement x is:

X = A.sin(f%-.t)

We can also find the period of vibration T :

_ M
T_zd;

If you would like the derivation:

A.sin[J%.(t +T)] = A.sin[j%.t +27]
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Basic concepts

\l\
\

Cannot happen in a real physical system, it must diminish over time
We can represent this reduction of amplitude with a damper

This modifies the equation to become:

M.X +c.x+ kx=0

Damper T
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Looking at the sine wave, is seems to go on forever
Cannot happen in a real physical system, it must diminish over time
We can represent this reduction of amplitude with a damper

This modifies the equation to become:
M.X +c.x+ kx=0
Where c can be taken as the damping factor:

The damped vibration look like this, this is the damping envelope
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Looking at the sine wave, is seems to go on forever
Cannot happen in a real physical system, it must diminish over time
We can represent this reduction of amplitude with a damper

This modifies the equation to become:
M.X +cx+ kx=0
Where c can be taken as the damping factor:
The damped vibration look like this, this is the damping envelope

This assumes the system experiences just an impact load once

If the system is subjected to continuous force the equation becomes:

M.X + c.x + k.x = force input

The solution takes long to derive, even for simple force input
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Our simple spring model now looks like this, with force input

Q rotating wheel
7

This simple model helps to explain what happens with a vessel
during a seismic event, which is a much more complicated system
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Basic concepts

A vertical vessel stands on its foundation like this

\\
\

The vessel is shaken from side to side, producing stresses in the shell

The vessel wants to do this

12
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Basic concepts

A vertical vessel stands on its foundation like this

\l\
\

The vessel is shaken from side to side, producing stresses in the shell
The vessel wants to do this, as the vessel is accelerated right
Produces a tensile stress in the shell wall, compressive the other side

acceleration

7 : 13
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Basic concepts

A vertical vessel stands on its foundation like this

As the ground shakes during a seismic event, this is what happens

This is the same as subjecting the vessel to a moment

Vibration takes place both to the left and to the right, reversing moment

If the oscillations are exces?eﬂha\essel can be damaged

acceleration
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A vertical vessel stands on its foundation like this

As the ground shakes during a seismic event, this is what happens

This is the same as subjecting the vessel to a moment

Vibration takes place both to the left and to the right, reversing moment

If the oscillations are excessive, the vessel can be damaged

If the natural frequency coincides with the forcing frequency — damage
can be the result !
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This is the natural frequency of the vessel
This is the forcing frequency from the seismic event, input energy
The two frequencies are added together, called resonance

That vibration can damage attached piping and the foundation &
bolting

The forcing seismic energy is not a simple sine wave

Final vibration
Seismic energy

vessel frequency
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Before we look at seismic profiles, let us look at this simple case
A vessel experiencing an acceleration a (m/s?) to the right

The part of the vessel above section x-x has a mass of m (kg)
From Newton’s Second Law there is a shear force f = ma

This acts at the Centre of Gravity of the section

Acceleration a

6/5/2014



N

Basic concepts

This is the force that acts at the CG of the upper section
This causes a moment about x-x, M = f.L
Giving rise to the stresses in the lower portion of the vessel shell

Things are not that simple !

Acceleration a
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w
The real profile of a Seismic Event \

time —

Ground movement

This data could come from a real Earthquake in California for example
How do we deal with such complicated profiles ?
The four things that are needed are:

0 The period of vibration

0 The mode of vibration

0 The properties of the soil/rock on which the vessel stands

O The type of seismic event
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Q
The soil or rock has partially elastic properties \

It's as though the foundation were springs under the vessel
There are several ways of estimating the period of vibration

If the vessel were a simple uniform cantilever the period is:

E = Elastic Modul
L = Length of the

I = Second Mome of the vessel

But, invariably the vessel is noga uniférm structure
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C. E. Freese wrote a paper to estimate the period of vibration L)

Vibrations of Vertical Pressure Vessels

C. E. FREESE This paper is primarily concerned with the vibration of verfical pressure vessels known
_ ) as columns or towers.
Fmgfrggrlg:aﬁgﬂ?ﬁ?dﬁ Igs The procedure for estimating the period of first mode of vibration for columns which
Angeles, Calif. Mem. ASME are the same diameter and thickness _for their entire length is outlined. A graph is included
Jor this purpose which recommends limits between vessels considered to be static
structures and those considered dynamic.

A method for designing vessels considered as dynamic structures is described as well
as a detailed procedure for estimating the period of vibration of multithickness (stepped
shell) vessels and/or vessels built to two or more diameters with conical transitions where

The d rawb ack: the difference in diameter is small.

There is a brigf resume of the “Karman vortexes” effect and a discussion regarding

vibration damping by liguid loading and the benefit of ladders and platforms which help

d It only estimate$ thefirst-mode-ofvibration

The design procedure outlined will be useful to the practical vessel designer confronted

O Itis an estimate acéliracy dépénding thé ségiiérit lengt

C.E. Freese tried to estimate if the vibrations were not too wild

Introduction
2 What 1s the most practical method for designing to meet

dynamic conditions?

3 Does the method used produce consistent results and does 1t
provide additional strength to resist the force due to the mass-
acceleration resulting from the motion of the vessel 7

4 Is the period of vibration of the dynamically designed vessel

such that prevailing winds are not apt to cause excessive
T 7

For many years 1t was customary to apply guy wires
to tall .slender pressure vessels. In. recent years. refinery and
petro-chemical officials have demanded self-supporting vessels
from the standpoint of plant appearance and safety.

In order to design a self-supporting vessel of this type, the
following problems must be carefully analyzed:
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w
Look at these Modes of vibration \

The simple numerical integration cannot handle higher modes
For accurate work another method must be employed

PV Elite uses an Eigen Solver to accurately predict the period of
many modes of vibration

But first, we consider a very simple analysis, assuming we know
the g acceleration of the vessel

These are the assumptions:

O Acceleration is consiflered a canstant
0 Assume/the vessel nioves as a/solid without bending
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Q
The simple approach (very conservative) \

First set up the model, divided into shell sections, with the CG’s
Get the mass of each section, set the acceleration 0,4g (say)
Compute the inertial force of each section

A

Choose a section

ms;x 0,49  Forces at the centroids

Set the moment arms

Moment = 2 (force x moment arm)

mxo0,4g 1he tensile and compressive stresses
can now be computed at section X-X
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Example Seismic Code ASCE 7: 2002 \\
)

In an earthquake the system of dynamic forces is very complex
As though each mass is excited by a number of oscillators
Presents a complex dynamic calculation to compute vibration period

PV Elite has an Eigen solver which

o

O Computes the period of vibration accurately

O Does the calculation for many modes

QO Is less conservative than the numerical method

O Reduces stresses

Demo Vibration_Seismic.pvdb

Kt

6/5/2014 25

N



Example Seismic Code ASCE 7: 2002
First we have to classify the site where the vessel is located
There are five site classes: A, B, C, D, Eand F

O A hard rock vg > 1500 m/s
O B Rock 760 m/s < vg <1500 m/s
O C dense soil 370 m/s <vg <760 m/s
O D stiff soil 180 m/s <vg <370 m/s
O E soil Vg <180 m/s

O F sites requiring an engineering survey

The site class defines the elastic quality of the site

Sites where the soil can be liquefied need special
consideration.

The site class is generally applied to the upper
layers of the ground

6/5/2014
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Example Seismic Code ASCE 7: 2002
Assign the short period spectral acceleration Sg and S,

S¢ = acceleration for 5% damping at short period

S, = acceleration for 5% damping at 1 second period

Here are values from the United States Geological Survey

50 U.5. States

Name *  MinSs ¥ Min S, = [ Max Ss = [ Max S,

Alabama 0.083g 0.051g 0.401g 0.175g
{30.200°N, 57.650"W) (30_180°N, 87.800°W) {35.000°N, 85.200°W) (35.000°N, 33.200°W)

Alaska 0.006g 0.003g 2.865g 2.482g
(71.400°N, 156.600°W (71.200°N, 156200 (59 000°N, 137.900°W) (59.000°N. 137.900°W"

Arizons 0.127g 0.045g 0.978g 0.333g
(36.790°M, 109.050%0W0 (36.500°N, 109 200w (32 .500°N, 114 8310°W) {32 .500°N, 114810V}

0.135g 0.074g 2.814g 1.117g
Arkansas {33.020°N, 94 040°W) (33.020°N, 94.040°W) {36.000°N, 89.8300°W) (36.000°N, 89.800°W)

California 0.204g 0.107g 3.730g 1.389g
(34.350°M, 114.180°W0 (34 350°N, 114 180"V (34 460°N, 119.010°W) {34 400°N, 1187605V

Colorado 0.070g 0.036g 0.477g 0.143g
(40.700°N, 102.060%W {40.700°N, 102 060" (37_150°N, 105 500>V (37. 700N, 105 6505V

Connecticut 0.155g 0.057g 0.264g 0.071g

(41.310°N, 71.910°W)

(41.310°N, 71.910°W)

(41.000°N. 73.660"W)

(41.100°N, 73.720°W)

<



Example Seismic Code ASCE 7: 2002
Assign the short period spectral acceleration Sg and S,

N

Next we need some coefficients F, and F,,, Tables 9.4.1.2.4aand b

TABLE9.4.1.2.4a

VALUES OS A FUNCTION OF SITE CLASS AND MAPPED SHORT PERIOD MAXIMIMUM
CONSIDERED EARTHQUAKE SPECTRAL ACCELERATION

Mapped Maximum Considered Earthquake
Spectral Response Acceleration at Short Period
Site Class Ss<o-25 Ss=o-5 Ss=o-75 Ss=1-0 Ss=1-25

A 0.8 0.8 0.8 0.8 0.8

B 1.0 1.0 1.0 1.0 1.0

C 1.2 1.2 1.1 1.0 1.0

D 1 1 A4 11 1 1 1N i

TABLE9.4.1.2.4b
E VALUES 0@15 A FUNCTION OF SITE CLASS AND MAPPED
F 1-SECON OD MAXIMUM CONSIDERED EARTHQUAKE
= SPECTRAL ACCELERATION
Mapped Maximum Considered Earthquake
Spectral Response Acceleration at 1-Second Periods
Site Class 51<0.1 Sl=0.2 Sl=0.3 Sl=0.4 S;=0.5
A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 17 1.6 1.5 1.4 1.3
D 2.4 2.0 1.8 1.6 1.5
E 3.5 3.2 2.8 2.4 2.4
F a a a a a
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Example Seismic Code ASCE 7: 2002 \Y
)

Next we have to find the Site Adjustment Coefficient

Sms = F3.Ss Sm1 = Fy.S;
Now find the Design Spectral Response Acceleration
2 2
Sps = ESMS Sp; = 55M1

Here is the information as seen on the response spectrum diagram

Sps = short time response

Sp; = 1 second response
TO = O’Z'SD]./SDS
Ts = Sp1/Sps

Tg 1,0
6/5/2014 ground period seconds T 29
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Example Seismic Code ASCE 7: 2002
Next the Coefficient for Upper Calculated Period C

TABLE 9.5.5.3.1
COEFFICIENT FOR UPPER LIMIT ON

CALCULATED PERIOD
Design Spectral Response
Acceleration at 1 Second Spy Coefficient Cy
= 0.4 1.4
0.3 1.4
0.2 1.5
0.15 1.6
0.1 1.7
< 0.05 1.7

We can also get Approximate Period Parameters C; and x

TABLE 9.5.5.3.2
VALUES OF APPROXIMATE PERIOD PARAMETERS C; AND x

Structure Type Gt X

Moment resisting frame systems of steel in which the frames 0.028(0.068) | 0.8
resist 100% of the required seismic force and are not enclosed
or adjoined by more rigid components that will prevent the
frames from deflecting when subjected to seismic forces

Moment resisting frame systems of reinforced concrete in 0.028(0.044) 0.9
which the frames resist 100% of the required seismic force
and are not enclosed or adjoined by more rigid components
that will prevent the frames from deflecting when subjected to
seismic forces

Eccentrically braced steel frames 0.03(0.07) 0.75

6/5/2(D]A4|‘t

other structural systems 0.02(0.055) 0.75
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Example Seismic Code ASCE 7: 2002 \\
)

Now we can compute the fundamental Period of Vibration T,
T, = Ci. (hy)X
Where h, is the height of the vessel

The actual fundamental frequency of Vibration of
the vesselis T

We limit the maximum frequency in the analysis:

T = min(T; Cy.T,)
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Example Seismic Code ASCE 7: 2002 \&

We need R, Response Modification Coefficient \

TABEL 9.5.2.2
DESIGN COEFFICIENT AND FACTORS FOR BASIC SEISMIC FORCE—RESISTING SYSTEMS

Structural System
Limitations & Building
Height (ft) Limitations

Response |System Over-| Deflection | Seismic Design Category
] o o Modification strength Amplification
Basic Seismic for Resisting-system Coefficient, R| Factor W, Factor Cq AB| C | D| E F

Inverted Pendulum System and
Cantilevered Column Systems Special

steel moment frames 2.5 2 2.5 NL NL [ NL| NL| NL
Ordinary steel moment frames 1.25 2 2.5 NL NL | NP[ NP| NP
Special reinforced concrete moment frames 2.5 2 1.25 NL NL | NP| NP| NP
Structural Steel Systems Not

Specifically Detailed for Seismic 3 3 3 NL NL | NP| NP | NP

Resistance

Response modification coefficient, R, for use throughout the standard. Note R reduces forces to a strength level, not
allowable stress

The best choiceisR =3
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Example Seismic Code ASCE 7: 2002 \\
)

We need I, the Importance Factor from the Seismic Use Group

TABLE9.1.4
OCCUPANCY IMPORTANCE
FACTORS

Seismic Use Group I

I 1

II 1,25
III 1,5

The SUG depends on the type of structure
0 High hazard exposure structures
O Protected access
0 Secure structures

ASCE 7 has all the details
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Example Seismic Code ASCE 7: 2002 \\
)

Next, we need the Seismic Response Coefficient Cq
There are several sets of calculations to determine Cg

We pick the first formula and let it go at that

S
Cs DS

—_— —— A

Base shear force V = Cg.W (W = weight of vessel) w=p

Each element of the vessel defines its
distribution as it has a particular height from
grade

We nee the Vertical Distribution factor k for
the vessel, depends on the Period of
Vibration

Pl

Q If T=0,5 k=1
Q If T=25 k=2 vV ‘
s/Apkerpolate for intermediate values of T 34




Example Seismic Code ASCE 7: 2002 \\
)

We need the weight w; of each component of the vessel

We now find the Vertical Distribution of the Seismic Forces C,

Wy..h,
Cux = 7 Cyx is an array of nhumbers
Z Wi-hi Wg F6 — !
i=1
Where: wg Fg =—>

n is the number of elements (6 in our case)
X is the element of interest

] _ _ W4 F4 #
Now we can find the Seismic Force on each

element F, x=3 w3 Fs I
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Example Seismic Code ASCE 7: 2002
Now we can get the seismic moment at (say) section X-X

From the moments, we can compute the axial stresses
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