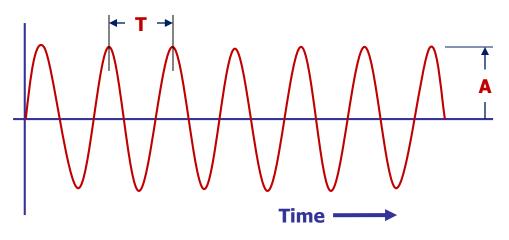
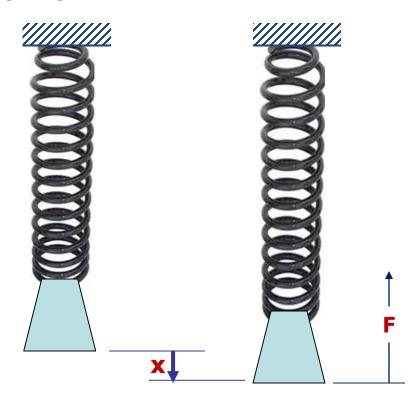

Vibration Analysis

BASICS

Presented by: Ray Delaforce



Any physical vibrating system in motion is subject to Newton's laws A vibrating object has a maximum displacement called the amplitude A


- Any physical vibrating system in motion is subject to Newton's laws A vibrating object has a maximum displacement called the amplitude A There is also a period (time) from crest to crest T The vibrating object also must have mass M The elements have to satisfy Newton's Second Law of motion What is needed is the force F to act on this mass
- A device that produces a cyclic force is a spring

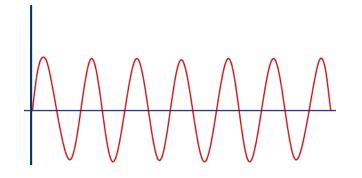
Consider first Newton's Second Law of motion

Force = Mass x Acceleration, or F = M.aHere is a mass on a spring, that has been displaced a distance x There is a force in the upward (-ve) direction on the mass -F If k is the spring stiffness, the force is F = -k.x

Consider first Newton's Second Law of motion Force = Mass x Acceleration, or F = M.a Here is a mass on a spring, that has been displaced a distance x There is a force in the upward (-ve) direction on the mass -F If k is the spring stiffness, the force is F = -k.x The acceleration is the second derivative of x, thus a = x From Newton's law we can get the differential equation

In the more familiar form:

 $\mathbf{M}.\mathbf{\ddot{x}} + \mathbf{k}.\mathbf{x} = \mathbf{0}$


6

Basic concepts

$$\mathbf{M}.\mathbf{\ddot{x}} + \mathbf{k}.\mathbf{x} = \mathbf{0}$$

The solution to this equation for the displacement **x** is:

$$x = A.sin(\sqrt{\frac{k}{M}}.t)$$

If you would like the derivation:

$$\ddot{\mathbf{x}} + \frac{\mathbf{k}}{\mathbf{M}} \mathbf{x} = \mathbf{0} \qquad \text{Let } \mathbf{x} = \mathbf{A} \mathbf{e}^{\alpha t} \qquad \alpha^2 \mathbf{A} \mathbf{e}^{\alpha t} + \mathbf{A} \mathbf{e}^{\alpha t} \frac{\mathbf{k}}{\mathbf{M}} = \mathbf{0} \qquad \alpha^2 + \frac{\mathbf{k}}{\mathbf{M}} = \mathbf{0}$$
$$\alpha = \mathbf{i} \sqrt{\frac{\mathbf{k}}{\mathbf{M}}} \qquad \mathbf{x} = \mathbf{A} \mathbf{e}^{\mathbf{i}} \sqrt{\frac{\mathbf{k}}{\mathbf{M}}} \cdot \mathbf{t} \qquad \text{Thus:} \qquad \mathbf{x} = \mathbf{A} \cdot \sin(\sqrt{\frac{\mathbf{k}}{\mathbf{M}}} \cdot \mathbf{t}) + \mathbf{i} \cdot \mathbf{A} \cdot \cos(\sqrt{\frac{\mathbf{k}}{\mathbf{M}}} \cdot \mathbf{t})$$
$$\text{But x does not contain a imaginary part thus:} \qquad \mathbf{x} = \mathbf{A} \cdot \sin(\sqrt{\frac{\mathbf{k}}{\mathbf{M}}} \cdot \mathbf{t})$$

$$\mathbf{M}.\mathbf{\ddot{x}} + \mathbf{k}.\mathbf{x} = \mathbf{0}$$

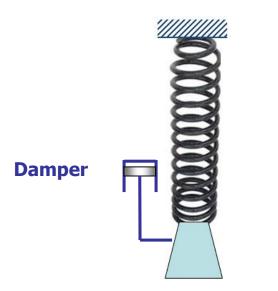
The solution to this equation for the displacement **x** is:

$$x = A.sin(\sqrt{\frac{k}{M}}.t)$$

We can also find the period of vibration T :

$$T = 2\pi \sqrt{\frac{M}{k}}$$

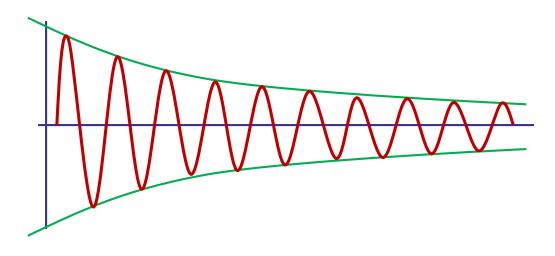
If you would like the derivation:


A.sin[
$$\sqrt{\frac{k}{M}}$$
.(t + T)] = A.sin[$\sqrt{\frac{k}{M}}$.t +2 π]

6/5/2014

Looking at the sine wave, is seems to go on forever Cannot happen in a real physical system, it must diminish over time We can represent this reduction of amplitude with a damper This modifies the equation to become:

 $M. \ddot{x} + c.\dot{x} + k.x = 0$


Looking at the sine wave, is seems to go on forever Cannot happen in a real physical system, it must diminish over time We can represent this reduction of amplitude with a damper

This modifies the equation to become:

M. x + c.x + k.x = 0

Where **c** can be taken as the damping factor:

The damped vibration look like this, this is the damping envelope

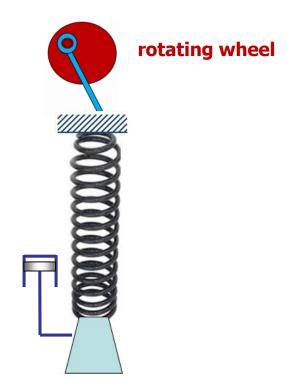
Looking at the sine wave, is seems to go on forever Cannot happen in a real physical system, it must diminish over time We can represent this reduction of amplitude with a damper This modifies the equation to become:

M. x + c.x + k.x = 0

Where **c** can be taken as the damping factor:

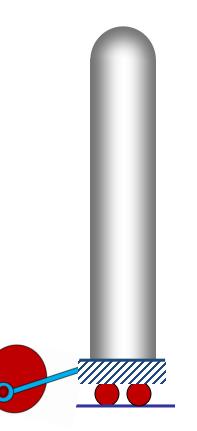
The damped vibration look like this, this is the damping envelope

This assumes the system experiences just an impact load once

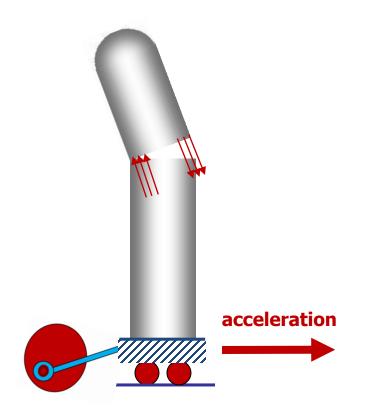

If the system is subjected to continuous force the equation becomes:

M.
$$\ddot{x}$$
 + c. \dot{x} + k. \dot{x} = force input

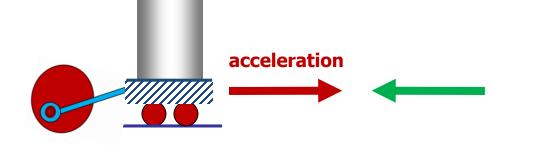
The solution takes long to derive, even for simple force input


Our simple spring model now looks like this, with force input

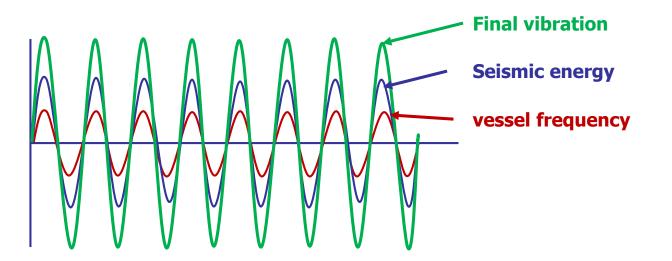
This simple model helps to explain what happens with a vessel during a seismic event, which is a much more complicated system

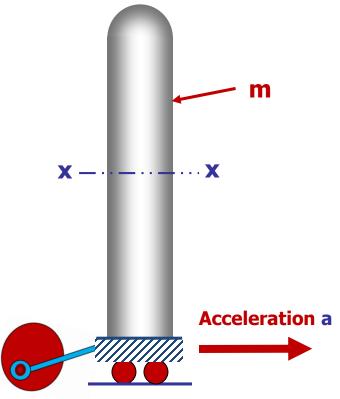


A vertical vessel stands on its foundation like this As the ground shakes during a seismic event, this is what happens The vessel is shaken from side to side, producing stresses in the shell The vessel wants to do this

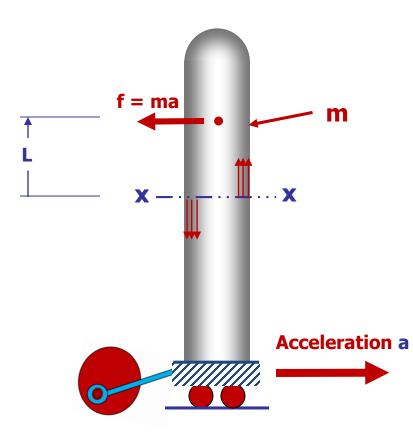


A vertical vessel stands on its foundation like this As the ground shakes during a **seismic event**, this is what happens The vessel is shaken from side to side, producing stresses in the shell The vessel wants to do this, as the vessel is accelerated right Produces a **tensile** stress in the shell wall, **compressive** the other side

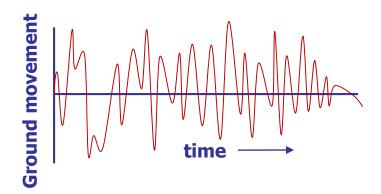

A vertical vessel stands on its foundation like this As the ground shakes during a seismic event, this is what happens This is the same as subjecting the vessel to a moment Vibration takes place both to the left and to the right, reversing moment If the oscillations are excessive, the vessel can be damaged


A vertical vessel stands on its foundation like this As the ground shakes during a seismic event, this is what happens This is the same as subjecting the vessel to a moment Vibration takes place both to the left and to the right , reversing moment If the oscillations are excessive, the vessel can be damaged If the natural frequency coincides with the forcing frequency – damage can be the result !

- This is the natural frequency of the vessel
- This is the forcing frequency from the seismic event, input energy
- The two frequencies are added together, called resonance
- That vibration can damage attached piping and the foundation & bolting
- The forcing seismic energy is not a simple sine wave



Before we look at seismic profiles, let us look at this simple case A vessel experiencing an acceleration a (m/s^2) to the right The part of the vessel above section x-x has a mass of m (kg) From Newton's Second Law there is a shear force f = ma This acts at the Centre of Gravity of the section



- This is the force that acts at the CG of the upper section
- This causes a moment about x-x , M = f.L
- Giving rise to the stresses in the lower portion of the vessel shell Things are not that simple !

The real profile of a Seismic Event

This data could come from a real Earthquake in California for example How do we deal with such complicated profiles ?

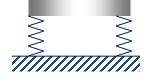
The four things that are needed are:

- □ The period of vibration
- **The mode of vibration**
- □ The properties of the soil/rock on which the vessel stands
- □ The type of seismic event

The soil or rock has partially elastic properties It's as though the foundation were springs under the vessel There are several ways of estimating the period of vibration If the vessel were a simple uniform cantilever the period is:

$$T = \frac{2.\pi}{3,52} \sqrt{\frac{M.L^3}{E.I}}$$

Were:
M = Mass of the vessel
E = Elastic Modulus


= Length of the vessel L

M =

E =

I = Second Moment of area of the vessel

But, invariably the vessel is not a uniform structure

C. E. Freese wrote a paper to estimate the period of vibration

C. E. FREESE

Mechanical Engineer. The Fluor Corporation, Ltd., Los Angeles, Calif, Mem, ASME

The drawback:

It only estimates

It is an estimate:

Vibrations of Vertical Pressure Vessels

This paper is primarily concerned with the vibration of vertical pressure vessels known as columns or towers.

The procedure for estimating the period of first mode of vibration for columns which are the same diameter and thickness for their entire length is outlined. A graph is included for this purpose which recommends limits between vessels considered to be static structures and those considered dynamic.

A method for designing vessels considered as dynamic structures is described as well as a detailed procedure for estimating the period of vibration of multithickness (stepped shell) vessels and/or vessels built to two or more diameters with conical transitions where the difference in diameter is small.

There is a brief resume of the "Karman vortexes" effect and a discussion regarding vibration damping by liquid loading and the benefit of ladders and platforms which help

the first mode of vibration

The design procedure outlined will be useful to the practical vessel designer confronted

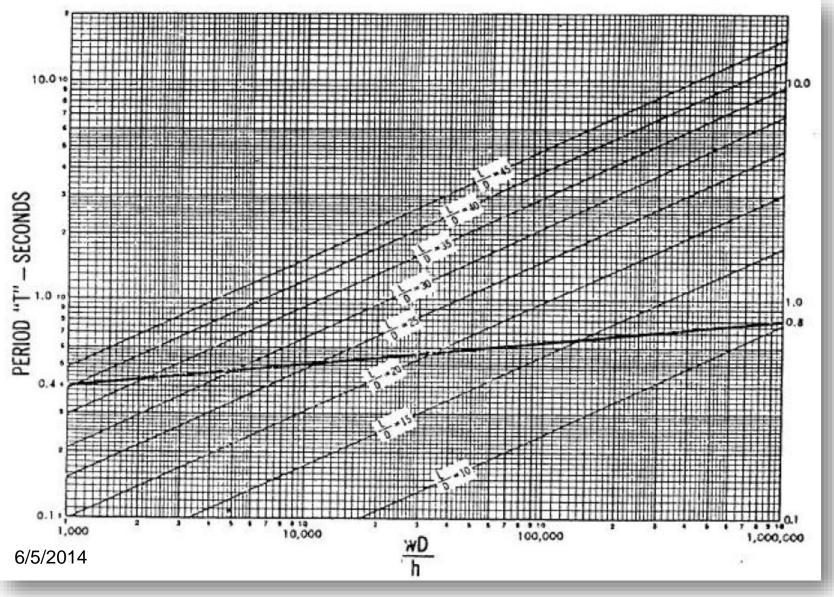
with the task of investigating vibration pessibilities in vertical pressure vessels. accuracy depending the segment lengths

C.E. Freese tried to estimate if the vibrations were not too wild

Introduction

For many years it was customary to apply guy wires to tall slender pressure vessels. In, recent years, refinery and petro-chemical officials have demanded self-supporting vessels from the standpoint of plant appearance and safety.

In order to design a self-supporting vessel of this type, the following problems must be carefully analyzed:


2 What is the most practical method for designing to meet dynamic conditions?

3 Does the method used produce consistent results and does it provide additional strength to resist the force due to the massacceleration resulting from the motion of the vessel ?

4 Is the period of vibration of the dynamically designed vessel such that prevailing winds are not apt to cause excessive movement?

C. E. Freese used this graph to estimate the stability

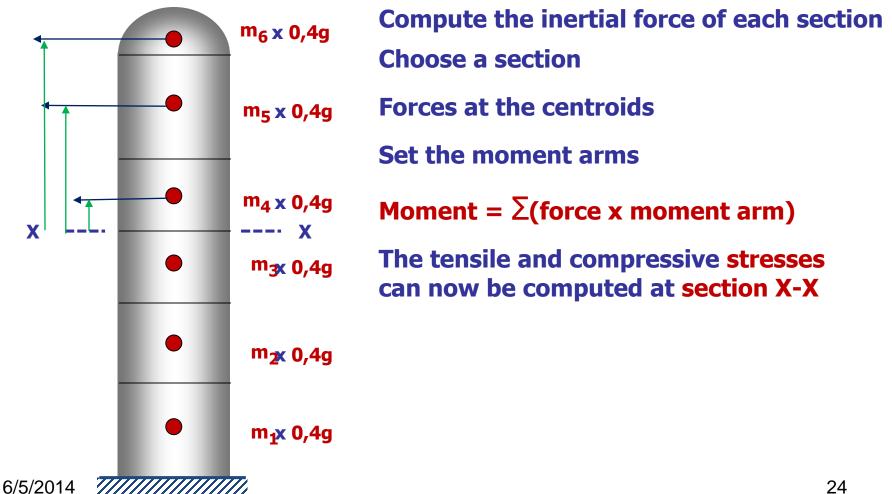
22

Look at these Modes of vibration

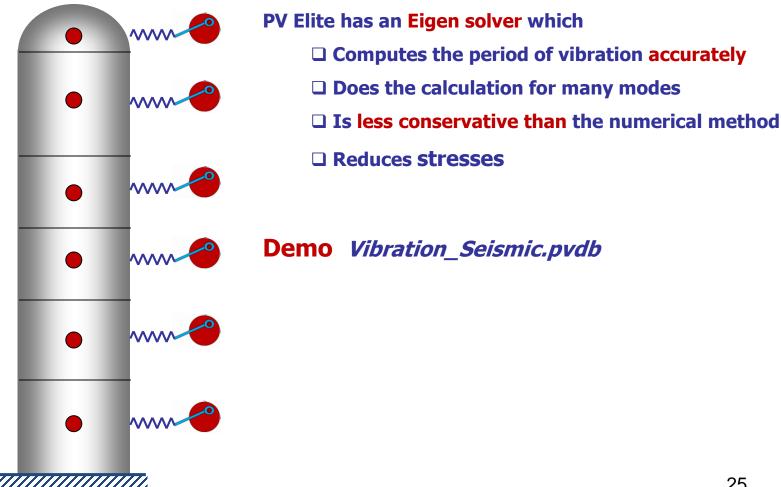
The simple numerical integration cannot handle higher modes For accurate work another method must be employed

PV Elite uses an Eigen Solver to accurately predict the period of many modes of vibration

But first, we consider a very simple analysis, assuming we know the g acceleration of the vessel


These are the assumptions:

- □ Acceleration is considered a constant/
- □ Assume/the vessel moves as a solid without bending



The simple approach (very conservative)

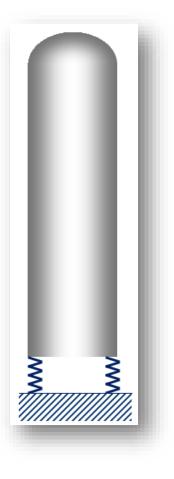
First set up the model, divided into shell sections, with the CG's Get the mass of each section, set the acceleration 0,4g (say)

In an earthquake the system of dynamic forces is very **complex** As though each mass is excited by a number of oscillators Presents a complex dynamic calculation to compute vibration period

6/5/2014

6/5/2014

Example Seismic Code ASCE 7: 2002


First we have to classify the site where the vessel is located There are five site classes: A, B, C, D, E and F

- $\Box A hard rock \qquad v_s > 1500 \text{ m/s}$
- □ B Rock 760 m/s < v_s <1500 m/s
- □ **C** dense soil 370 m/s < v_s < 760 m/s
- □ **D** stiff soil 180 m/s < v_s < 370 m/s
- □ E soil v_s < 180 m/s
- **F** sites requiring an engineering survey

The site class defines the elastic quality of the site

Sites where the soil can be liquefied need special consideration.

The site class is generally applied to the upper layers of the ground

Assign the short period spectral acceleration S_s and S₁

≎

 S_s = acceleration for 5% damping at short period S_1 = acceleration for 5% damping at 1 second period Here are values from the United States Geological Survey

0.155g

(41.310°N, 71.910°W)

Connecticut

6/5/2014

50 U.S. States ≎ ٥ Min Ss Min S₁ Max Ss Max S₁ Name 0.083g 0.051g 0.401g 0.175g Alabama (30.180°N, 87.800°W) (35.000°N, 88.200°W) (35.000°N, 88.200°W) (30.200°N, 87.650°W) 0.006g 0.003a 2.865a 2.482g Alaska (71.400°N, 156.600°W) (71.200°N, 156.200°W) (59.000°N, 137.900°W) (59.000°N, 137.900°W) 0.127g 0.045g 0.978g 0.333g Arizona (36.790°N, 109.050°W) (36.500°N, 109.200°W) (32.500°N, 114.810°W) (32.500°N, 114.810°W) 0.135g 0.074a 2.814a 1.117g Arkansas (33.020°N, 94.040°W) (33.020°N, 94.040°W) (36.000°N, 89.800°W) (36.000°N, 89.800°W) 0.204a 0.107a 3.730a 1.389a California (34.350°N, 114.180°W) (34.350°N, 114.180°W) (34.460°N, 119.010°W) (34.400°N, 118.760°W) 0.070g 0.036a 0.477a 0.143a Colorado (40.700°N, 102.060°W) (40.700°N, 102.060°W) (37.150°N, 105.500°W) (37.700°N, 105.550°W)

0.057g

(41.310°N, 71.910°W)

0.264g

(41.000°N, 73.660°W)

<u>(41.100°N, 73.720°W)</u>

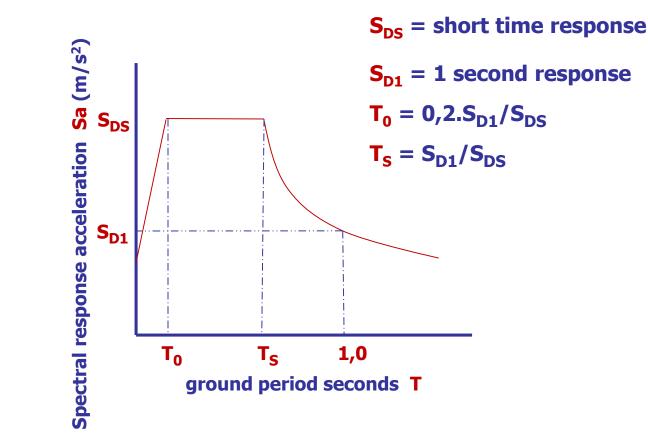
27

0.071g

Assign the short period spectral acceleration S_s and S_1

Next we need some coefficients F_a and F_v , Tables 9.4.1.2.4 a and b

		Mapped Maximum Considered Earthquake Spectral Response Acceleration at Short Period						
Site Clas	ss S _S	<0.25	S _S =0.5	S _S =0.75	S _S =1.0	S _s =1.25	S _S =1.25	
Α		0.8	0.8	0.8	0.8	0.8		
В		1.0	1.0	1.0	1.0	1.0		
С		1.2	1.2	1.1	1.0	1.0		
D	16		1/	1 3 FABLE 9.4.1.2.4b	11	1 0		
-	VALUES OF FV AS A FUNCTION OF SITE CLASS AND MAPPED 1-SECOND PERIOD MAXIMUM CONSIDERED EARTHQUAKE SPECTRAL ACCELERATION Mapped Maximum Considered Earthquake Spectral Response Acceleration at 1-Second Periods							
F		M	SPEC SPEC	TRAL ACCELERA [®] mum Considered	FION I Earthquake	IQUAKE		
-	Site Class	M	SPEC SPEC	TRAL ACCELERA mum Considered Acceleration at	FION Earthquake 1-Second Per	IQUAKE iods	=0.5	
-	Site Class A	M Spectr	SPEC Iapped Maxi al Response	TRAL ACCELERAmum ConsideredAcceleration at0.2S1=0	FION Earthquake 1-Second Per 3 S ₁	IQUAKE iods =0.4 S ₁ :	= 0.5	
-	_	M Spectr 	SPEC lapped Maxi al Response S ₁ =0	TRAL ACCELERAmum ConsideredAcceleration at 0.2 $S_1 = 0.3$ 0.8	FION Earthquake 1-Second Per 3 S ₁	iods =0.4 S ₁ : 0.8 (
-	Α	M Spectr 	SPECT Iapped Maxi ral Response S ₁ =0 0.8	TRAL ACCELERAmum ConsideredAcceleration at 0.2 $S_1 = 0.3$ 0.3 0.8 $0.1.0$	FION Earthquake 1-Second Per 3 S ₁	iods =0.4 S ₁ : 0.8 (1.0 :	0.8	
-	A B	M Spectr S ₁ <0.1 0.8 1.0	SPECT Tapped Maxi ral Response S ₁ =0 0.8 1.0	TRAL ACCELERAmum ConsideredAcceleration at0.2S1=0.30.801.01.5	FION Earthquake 1-Second Per 3 S ₁	iods =0.4 S ₁ : 0.8 (1.0 : 1.4 :	D.8 1.0	
-	A B C	M Spectr S ₁ <0.1 0.8 1.0 17	SPECT Tapped Maxie ral Response S ₁ =0 0.8 1.0 1.6	TRAL ACCELERAmum ConsideredAcceleration at 0.2 $S_1=0.3$ 0.2 $S_1=0.3$ 0.3 0.8 0 1.0 1.5 1.8	ΓΙΟΝ I Earthquake 1-Second Per 3 S ₁	iods =0.4 S ₁ : 0.8 0 1.0 1 1.4 1	D.8 1.0 1.3	


28

Next we have to find the Site Adjustment Coefficient $S_{MS} = F_a.S_S$ $S_{M1} = F_v.S_1$

Now find the Design Spectral Response Acceleration

$$S_{DS} = \frac{2}{3}S_{MS}$$
 $S_{D1} = \frac{2}{3}S_{M1}$

Here is the information as seen on the response spectrum diagram

6/5/2014

Next the Coefficient for Upper Calculated Period C_U

TABLE 9.5.5.3.1 COEFFICIENT FOR UPPER LIMIT ON CALCULATED PERIOD

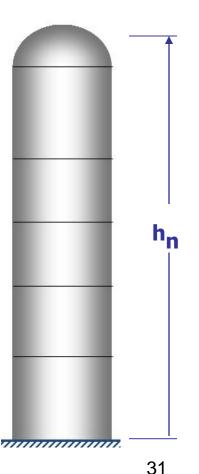
Design Spectral Response Acceleration at 1 Second S _{D1}	Coefficient C _U
> 0.4	1.4
0.3	1.4
0.2	1.5
0.15	1.6
0.1	1.7
< 0.05	1.7

We can also get Approximate Period Parameters C_t and x

TABLE 9.5.5.3.2 VALUES OF APPROXIMATE PERIOD PARAMETERS C_t AND x

	-	
Structure Type	c _t	x
Moment resisting frame systems of steel in which the frames resist 100% of the required seismic force and are not enclosed or adjoined by more rigid components that will prevent the frames from deflecting when subjected to seismic forces	0.028(0.068)	0.8
Moment resisting frame systems of reinforced concrete in which the frames resist 100% of the required seismic force and are not enclosed or adjoined by more rigid components that will prevent the frames from deflecting when subjected to seismic forces	0.028(0.044)	0.9
Eccentrically braced steel frames	0.03(0.07)	0.75
All other structural systems	0.02(0.055)	0.75

Now we can compute the fundamental Period of Vibration Ta

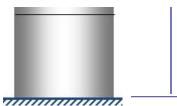

 $T_a = C_t \cdot (h_n)^x$

Where h_n is the height of the vessel

The actual fundamental frequency of Vibration of the vessel is T

We limit the maximum frequency in the analysis:

 $T = min(T; C_U.T_a)$


We need **R**, Response Modification Coefficient

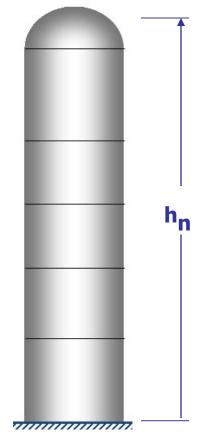
TABEL 9.5.2.2 DESIGN COEFFICIENT AND FACTORS FOR BASIC SEISMIC FORCE–RESISTING SYSTEMS

				Structural System Limitations & Building Height (ft) Limitations				
	Response Modification	System Over- strength	Deflection Amplification	Seism	ic Des	sign	Categ	jory
Basic Seismic for Resisting-system	Coefficient, R	Factor W _o	Factor Cd	A&B	С	D	Ε	F
Inverted Pendulum System and								
Cantilevered Column Systems Special steel moment frames	2.5	2	2.5	NL	NL	NL	NL	NL
Ordinary steel moment frames	1.25	2	2.5	NL	NL	NP	NP	NP
Special reinforced concrete moment frames	2.5	2	1.25	NL	NL	NP	NP	NP
Structural Steel Systems Not Specifically Detailed for Seismic Resistance	3	3	3	NL	NL	NP	NP	NP

Response modification coefficient, R, for use throughout the standard. Note R reduces forces to a strength level, not allowable stress

The best choice is **R** = **3**

We need I, the Importance Factor from the Seismic Use Group


TABLE 9.1.4				
OCCUPANCY IMPORTANCE				
FACTORS				

Seismic Use Group	I		
I	1		
п	1,25		
ш	1,5		

The SUG depends on the type of structure

- ☐ High hazard exposure structures
- Protected access
- □ Secure structures

ASCE 7 has all the details

Example Seismic Code ASCE 7: 2002 Next, we need the Seismic Response Coefficient C_S There are several sets of calculations to determine C_S We pick the first formula and let it go at that

Base shear force $V = C_s W (W = weight of vessel)$.

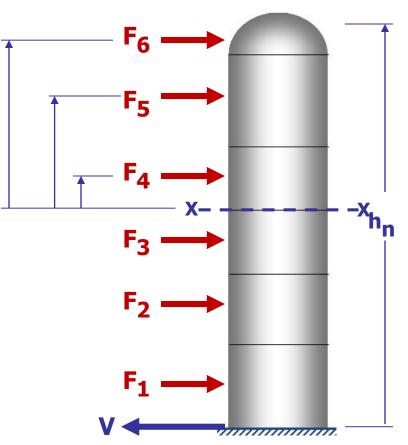
Each element of the vessel defines its distribution as it has a particular height from grade

We nee the Vertical Distribution factor k for the vessel, depends on the Period of Vibration

□ If T = 0,5 k = 1 □ If T = 2,5 k = 2

6/5/20 Proposed for intermediate values of T

h_n



We need the weight w_i of each component of the vessel

We now find the Vertical Distribution of the Seismic Forces C_{vx}

 $C_{vx} = \frac{w_x \cdot h_x}{n}$ **C_{vx}** is an array of numbers Σw_i.h_i $W_6 F_6$ i=1 Where: **n** is the number of elements (6 in our case) x is the element of interest $w_4 F_4$ Now we can find the Seismic Force on each hn element F_x $x = 3 W_3 F_3$ $F_x = C_{vx} V$ $W_2 F_2$ Fψ₁

