

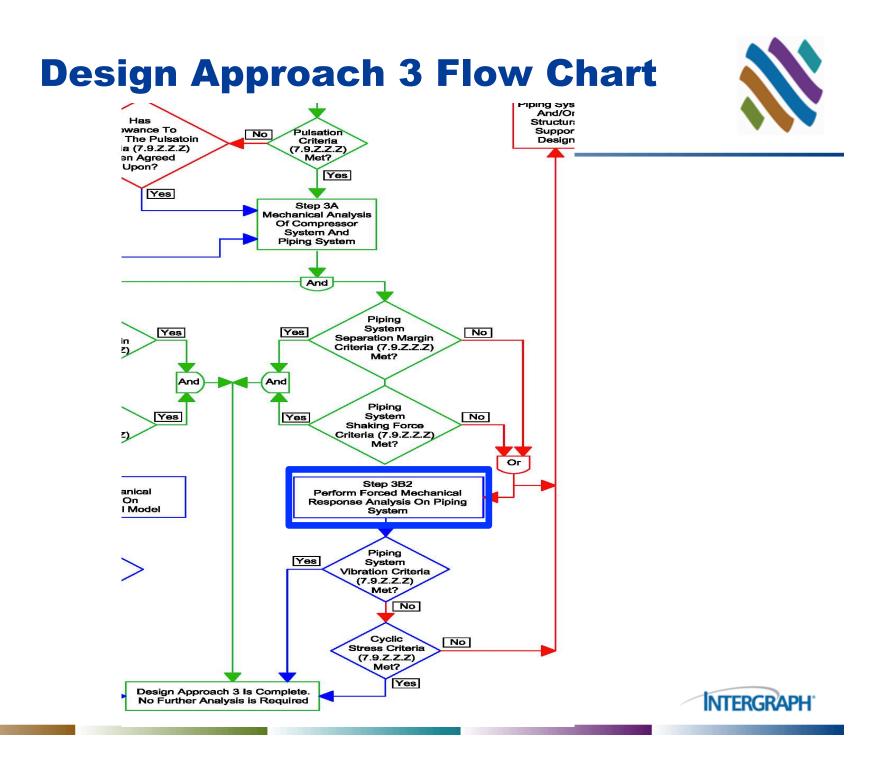
Evaluating Pressure Pulsation in Piping Systems with Caesar II

Ken Atkins David Hanes Engineering Dynamics, Inc.

Abstract:

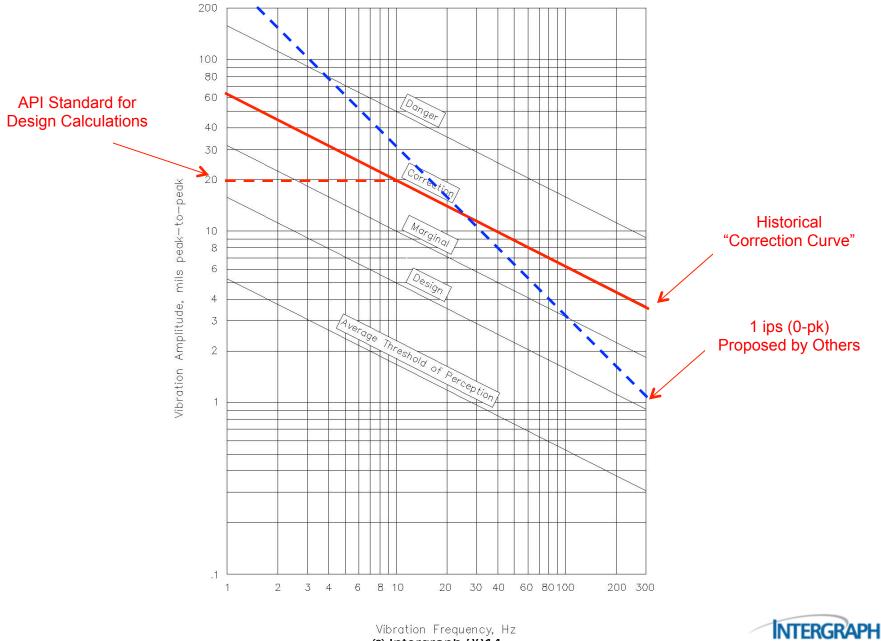
Designing piping systems based on the forced vibration response due to pulsation-induced shaking forces is risky business. Pulsation control is the primary design tool. However, in cases where a forced response analysis is specified or otherwise deemed necessary, the simplified harmonic frequency sweep available in CAESAR II can be used to evaluate "worst-case" scenarios and satisfy this requirement.

NTERGRA


Review / Context

Guidelines for Design of Reciprocating Machinery Piping Systems (API 618, 688)

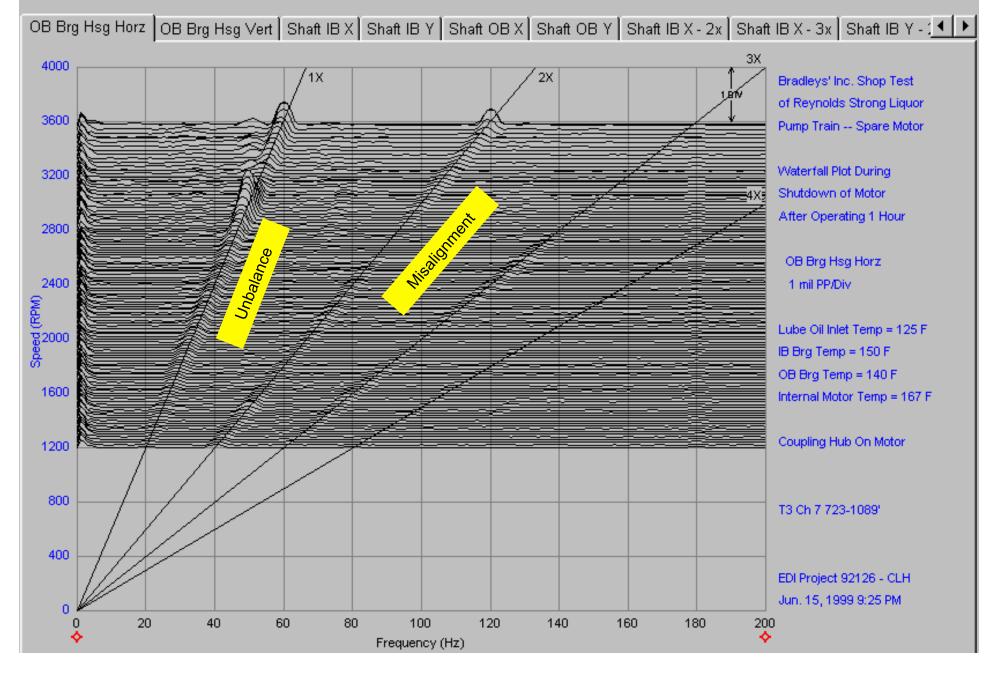
- •API 618 6th Edition will be issued soon
- •API 688 2nd Edition Task Force is active
- •Will cover all positive displacement machinery
 - •Recip. Compressors, PD Pumps,
 - Screw compressors and pumps

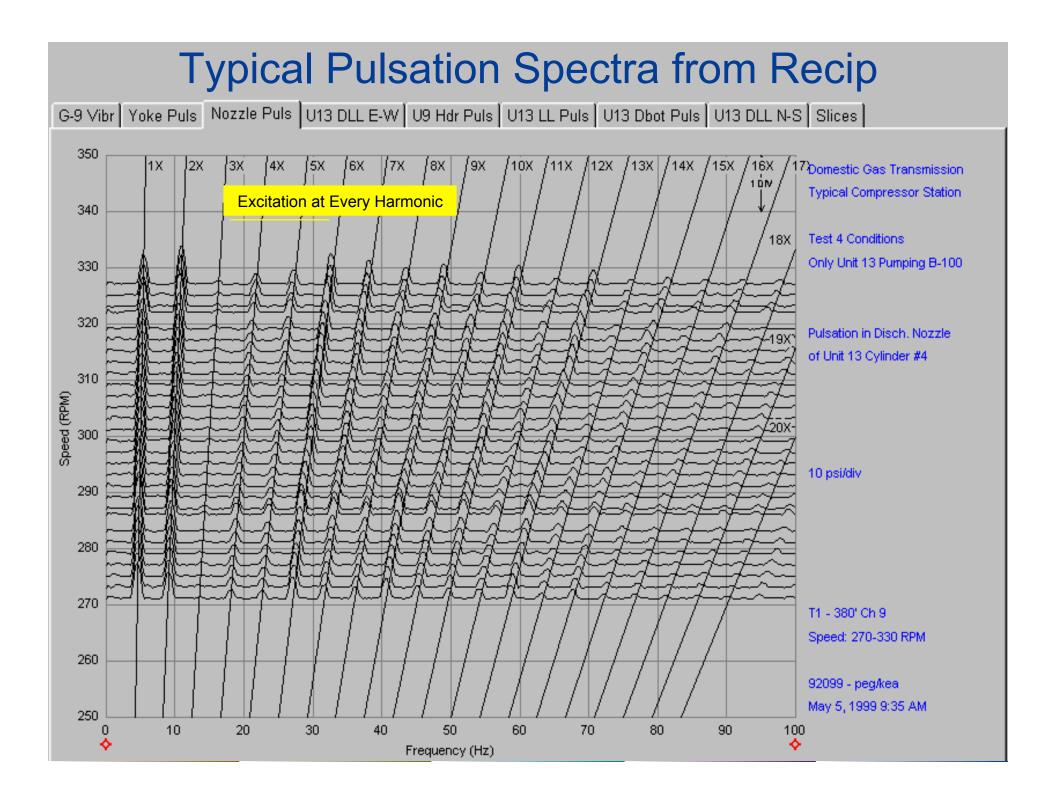

API 688 Guidelines

 Maintain separation margin between piping natural frequencies and significant shaking force frequencies.
 What is "significant" shaking force:

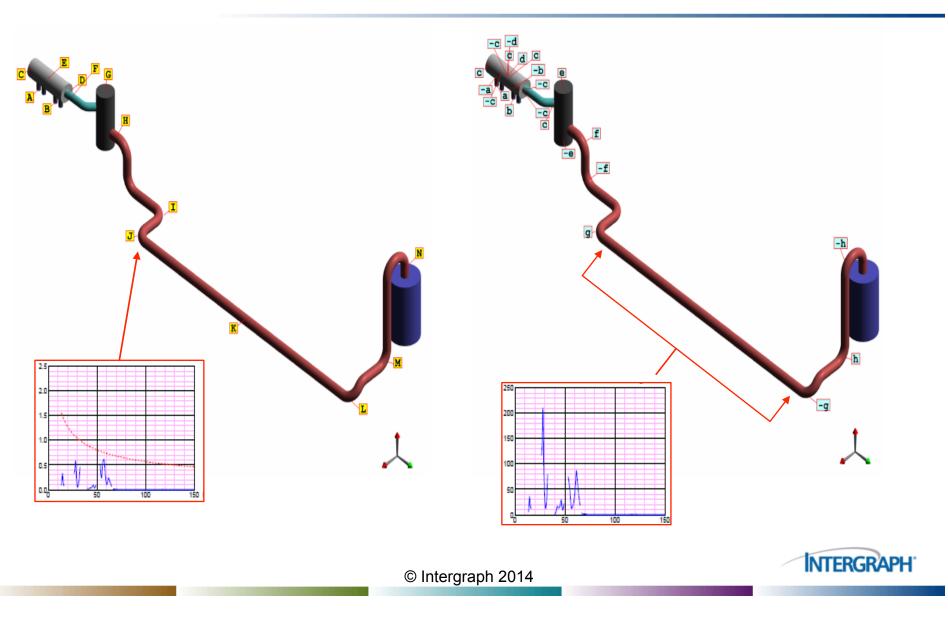
100 x NPS (lbs, p-p) (non-resonant)

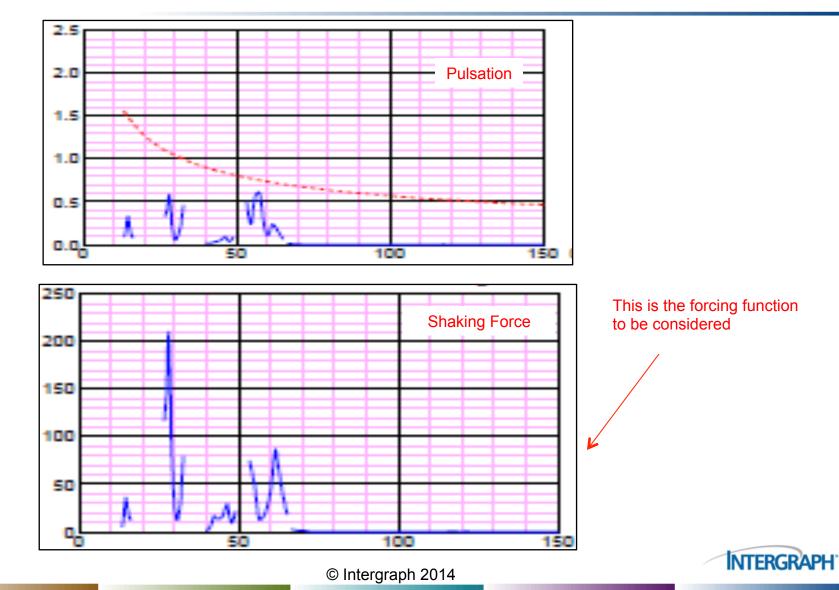
Vibration Screening Criteria for Reciprocating Compressor Piping Systems

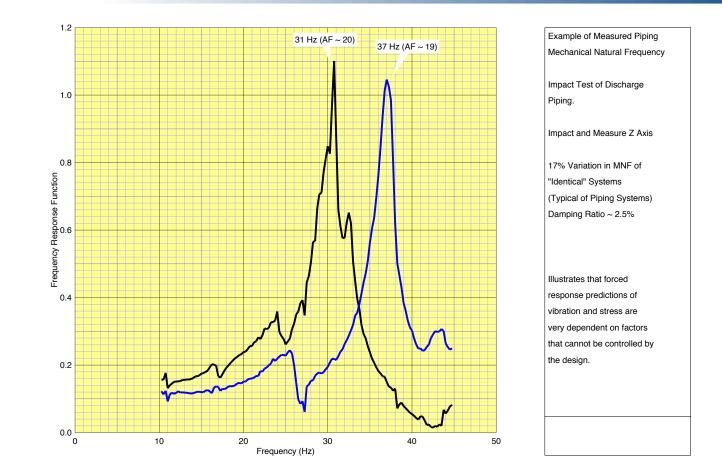

What is the excitation?



- Pulsation is generated at *every* harmonic of running speed
- Every elbow, diameter change, closed valve, etc. can couple pressure pulsation into a shaking force
- Pulsation is important!

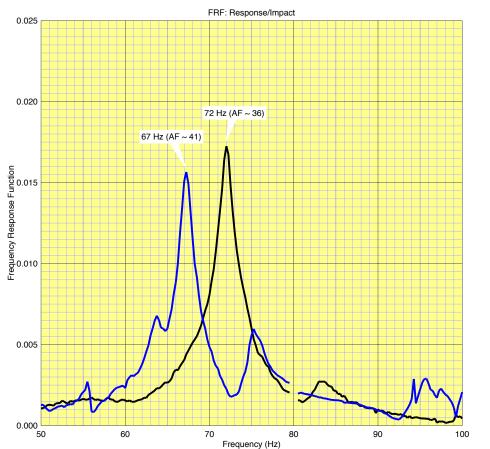

Typical Vibration Spectra From Turbomachine

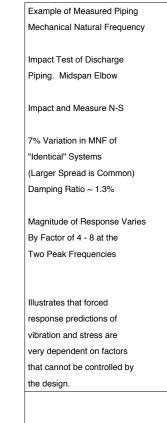

Typical Piping System Acoustical Model



Sample Data: Variable Speed

Sample Data: Measured Piping MNFs





Sample Data: Measured Piping MNFs

Concepts:

- Uncertainty of Piping MNFs is high (+/- 20%)
- Forced response results are dependent on proximity to resonance and damping
- Avoiding resonance is the preferred approach

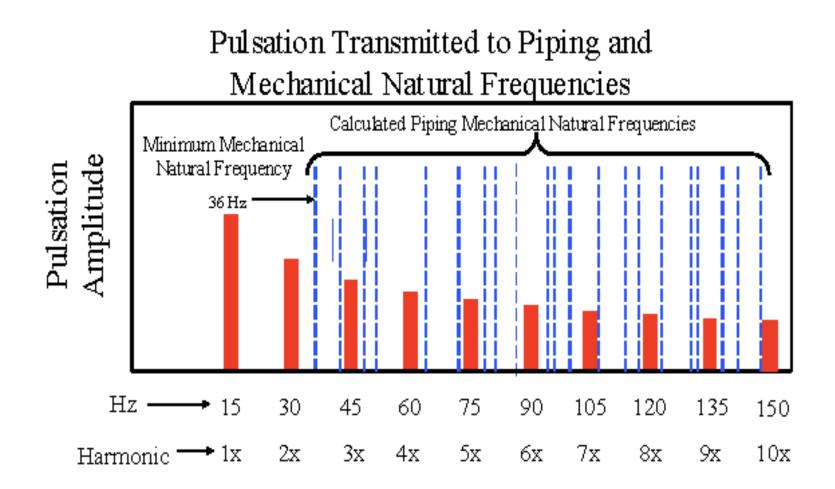
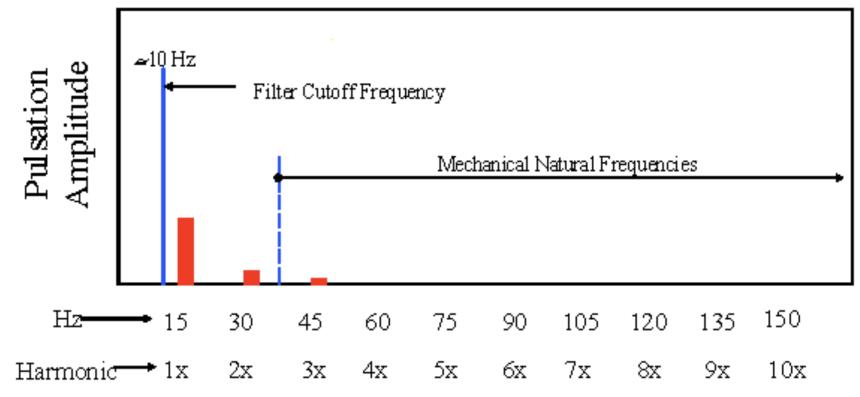



Figure 10. Pulsation Characteristics without Acoustic Filtering: Calculated Mechanical Natural Frequencies Superimposed

Pulsation Transmitted to Piping

Figure 16. Pulsation Characteristics with Acoustic Filtering

"Old School" (from CAU2012)

Guidelines for Design of Reciprocating Machinery Piping Systems (API 618, 688)

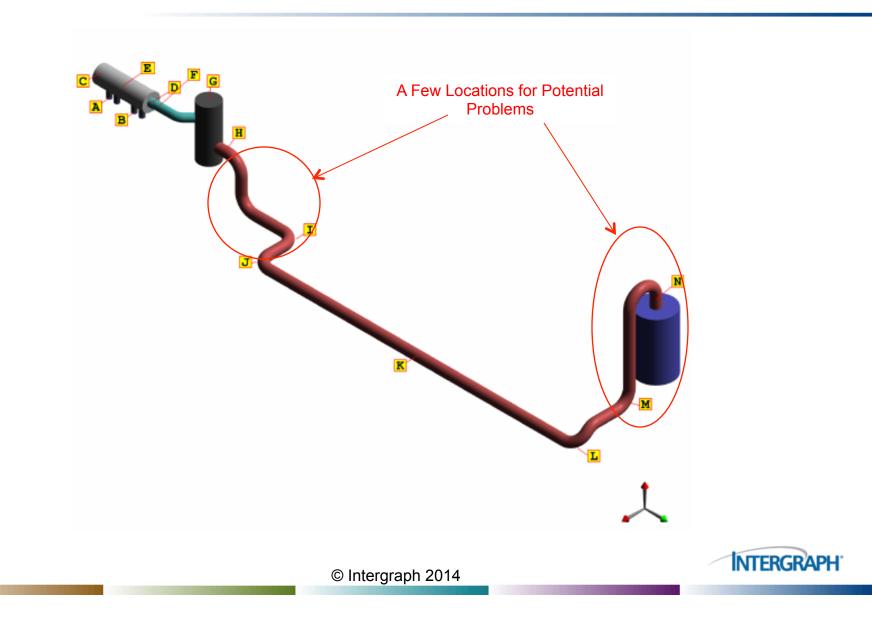
- •Minimize Bends
- •Provide Clamp Near Each Bend
- •Provide Clamp Near Each Concentrated Weight
- •Space Clamps According to Expected Excitation Frequency

"Old School"

Guidelines for Design of Reciprocating Machinery Piping Systems *(continued)*

•Ensure K_{support} > 2x K_{span}

•Use Good Clamp Designs


Natural Frequency of Simply-Supported Span (λ = 9.87)

Natural		Nomi	nal Pip	e Size	/ Outsi	ide Dia	meter		
	6	8	10	12	14	16	18	20	
Freq. (Hz)	6.625	8.625	10.75	12.75	14.00	16.00	18.00	20.00	
25	14.1	16.1	17.9	19.5	20.5	21.9	23.2	24.5	
30	12.9	14.7	16.4	17.8	18.7	20.0	21.2	22.3	
35	11.9	13.6	15.2	16.5	17.3	18.5	19.6	20.7	
40	11.1	12.7	14.2	15.4	16.2	17.3	18.4	19.3	
45	10.5	12.0	13.4	14.6	15.3	16.3	17.3	18.2	
50	10.0	11.4	12.7	13.8	14.5	15.5	16.4	17.3	
55	9.5	10.8	12.1	13.2	13.8	14.8	15.6	16.5	
60	9.1	10.4	11.6	12.6	13.2	14.1	15.0	15.8	
65	8.7	10.0	11.1	12.1	12.7	13.6	14.4	15.2	
70	8.4	9.6	10.7	11.7	12.2	13.1	13.9	14.6	
75	8.1	9.3	10.4	11.3	11.8	12.6	13.4	14.1	
80	7.9	9.0	10.0	10.9	11.4	12.2	13.0	13.7	
			© li	nteraranh 201	4		_	NTERGRAPH	°

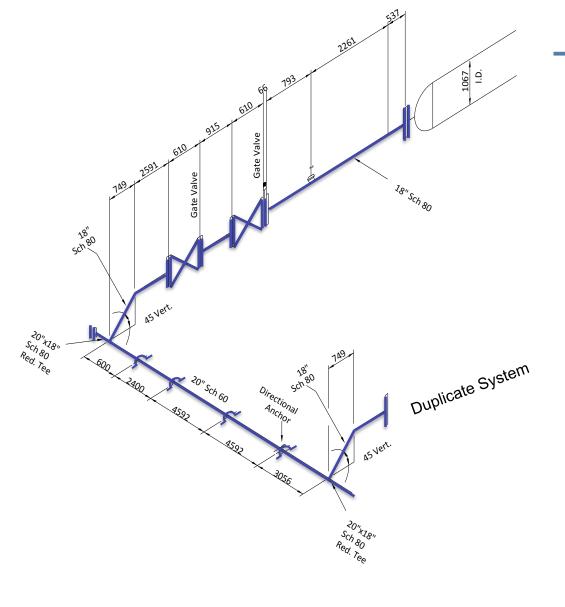
Piping Model

Using Caesar II for Dynamics

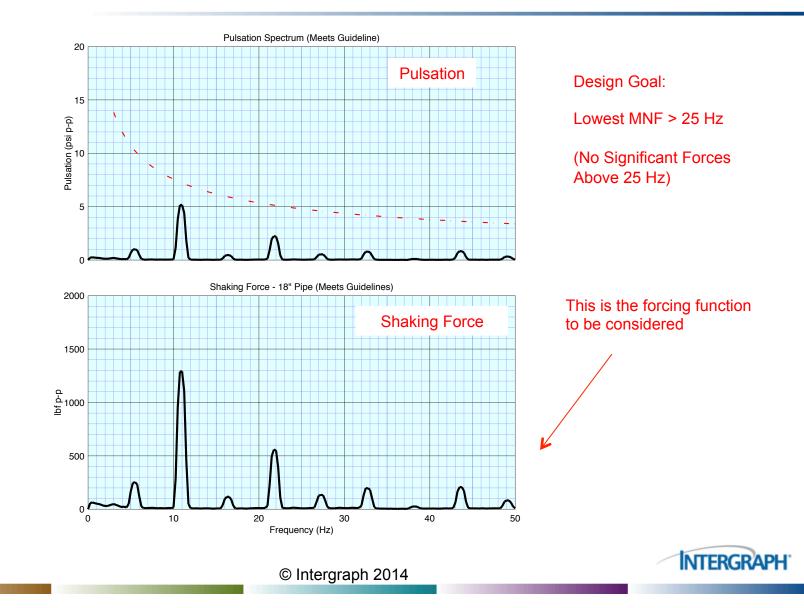
Caesar II Pipe Models

- Able to handle complex, non-deal spans that do not lend themselves to hand calculations
- Boundary conditions are the key. Assumptions that may be conservative from a thermal growth standpoint often lead to inaccuracies in natural frequency predictions
- If the guidelines for designing the system are followed, natural frequencies should be within the expected range

Concepts:


- Many times it is impractical to consider every force, every mode.
- Using constant force vs frequency is conservative
- Must understand mode shapes and forces

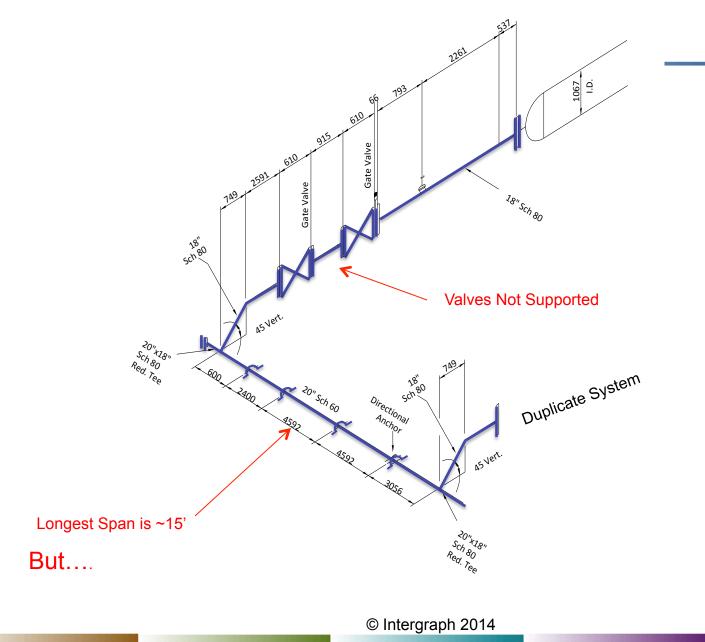
Sample Piping System



INTERGRAPH

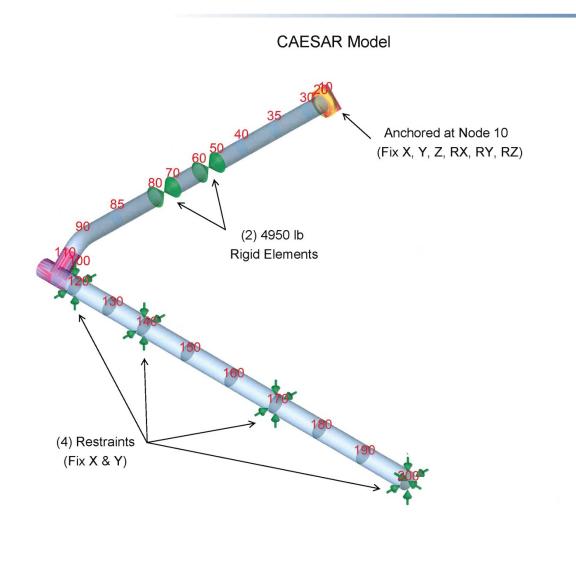
Sample Data: Constant Speed Unit

Natural Frequency of Simply-Supported Span (λ = 9.87)



Natural		Nomi	nal Pip	e Size	/ Outsi	ide Dia	meter	
	6	8	10	12	14	16	18	20
Freq. (Hz)	6.625	8.625	10.75	12.75	14.00	16.00	18.00	20.00
25	14.1	16.1	17.9	19.5	20.5	21.9	23.2	24.5
30	12.9	14.7	16.4	17.8	18.7	20.0	21.2	22.3
35	11.9	13.6	15.2	16.5	17.3	18.5	19.6	20.7
40	11.1	12.7	14.2	15.4	16.2	17.3	18.4	19.3
45	10.5	12.0	13.4	14.6	15.3	16.3	17.3	18.2
50	10.0	11.4	12.7	13.8	14.5	15.5	16.4	17.3
55	9.5	10.8	12.1	13.2	13.8	14.8	15.6	16.5
60	9.1	10.4	11.6	12.6	13.2	14.1	15.0	15.8
65	8.7	10.0	11.1	12.1	12.7	13.6	14.4	15.2
70	8.4	9.6	10.7	11.7	12.2	13.1	13.9	14.6
75	8.1	9.3	10.4	11.3	11.8	12.6	13.4	14.1
80	7.9	9.0	10.0	10.9	11.4	12.2	13.0	13.7
			Ô	oteraranh 201	Λ		_	NTERGRAPH

Sample Piping System



INTERGRAPH

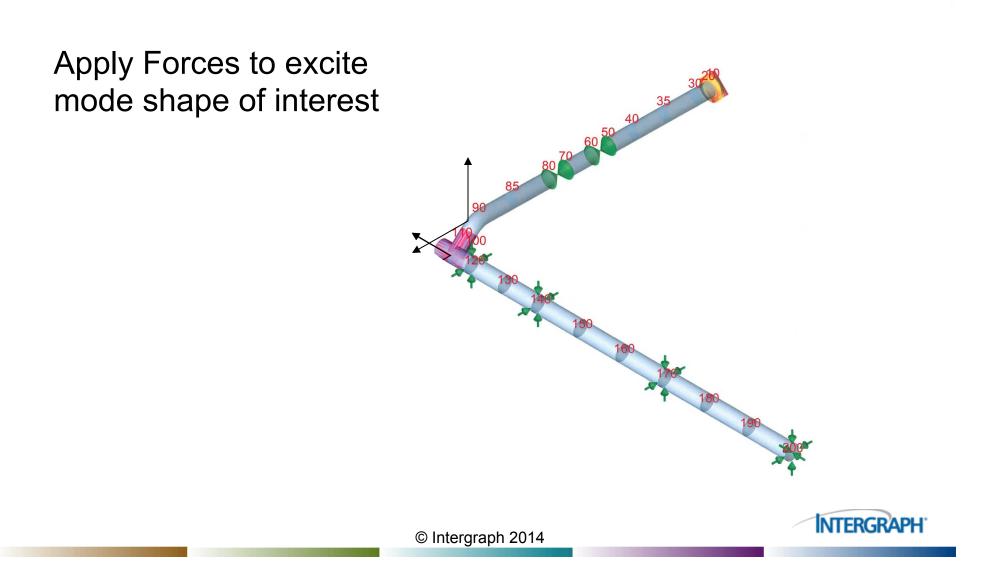
Caesar II Model

Suction Line (Header to Bottle)

Without axial restraint, F = 2.7 Hz

Oops! Not realistic due to clamp friction INTERGRAPH

Suction Line (Header to Bottle)


With axial restraint, lowest MNF = 13.3 Hz

Case 1: Forced Response

- Case 1: Separation margins not met, but forces are low
- Case 2: Separation margins not met, forces are high
- Case 3: Both separation margins and force guidelines are met

Cases 1 and 2: Forced Response

	Dynamio Edit		is - [S:\USERS\DCH\	CAESAR EXAMPLE\E	KAMPLE]			Ń	TERGRAPH
Ana	lysis Typ	e: Harm	onic	- 8) 🏄 🔒 🗢 🕅 🖉	≦ 4ª <mark>-</mark>			
E>	citation F	requenci	ies Harmonic Forces	Harmonic Displacements	Lumped Masses Snub	bers Control Paramete	ers		
		Cmt	(lb.) Force	Direction	(deg) Phase	Start Node	(opt) Stop Node	(opt) Increment	
	0	V	900.000000 , X , 0 , 100	0,0,0	,				-
	1		900.0000	Z	0.0000	100	0	0	
 Force applied is 0-pk. Enter 900 lbs for 1800 lbs p-p. Calculate response to force each direction separately. Comment-out direction not considered. Response will be linear with force. 									

Dynamic File Edit Analysis Type Excitation Fr	Tools :: Harmo		(AMPLE\EXAMPLE]		INTERGRAPH
	Cmt	(Hz) Starting Frequency 2.0000	(opt) Ending Frequency 27.0000	(opt) Increment 0.2500	(opt) Load Cycles
		100 load storeOur example	uency range to ev ep limit le was up to 25 H e enough frequen	lz (actually 2 – 2	· · · · · · · · · · · · · · · · · · ·

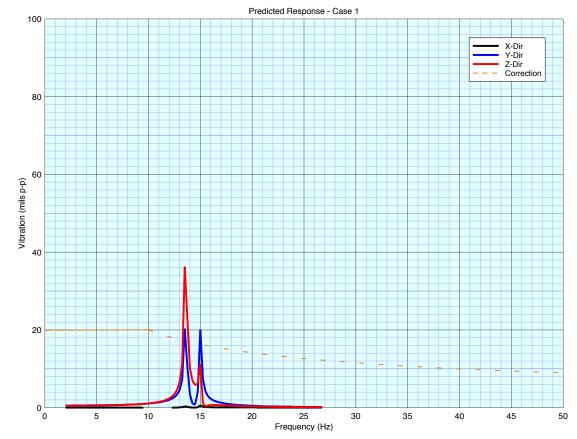
INTERGRAPH"

5	Dynami	ic Analy	sis - [S:\USERS\DCH\CA	ESAR EXAMPLE\EXAMPLE]	x
÷ F	ile Edit	Tools			INTERGRAPH"
i A	nalysis Typ	pe: Harn	nonic	- 🖃 🏄 🐘 🗢 i 💹 🗠 🖕	
G	Evoitation	Frequenc	cies Harmonic Forces Har	monic Displacements Lumped Masses Snubbers Control Parameters	
ĽĽ		rrequent			
		Def	Setting	Parameter	
	1		1	Static Load Case for Nonlinear Restraint Status	
	2		1000	Stiffness Factor for Friction (0.0-Not Used)	
	3		.005	Damping (DSRSS) (ratio of critical)	
	4		CONSISTENT	Mass Model (LUMPED/CONSISTENT)	
		• 5 • 5 • 6	estraints. Stiffness in frid Force × DSRSS = ζ (α Consistent mo	riate load case for nonlinear or single-direction ction direction = mu × Stiffness Factor (0 if axial restraints used) lamping ratio, 0.005 = ½%, conservative) del includes more terms in mass matrices but uses	
				Recommend tighter node spacing for lumped mod	

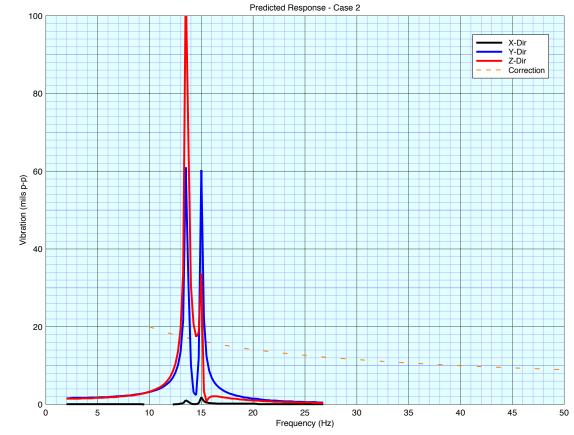
INTERGRAPH

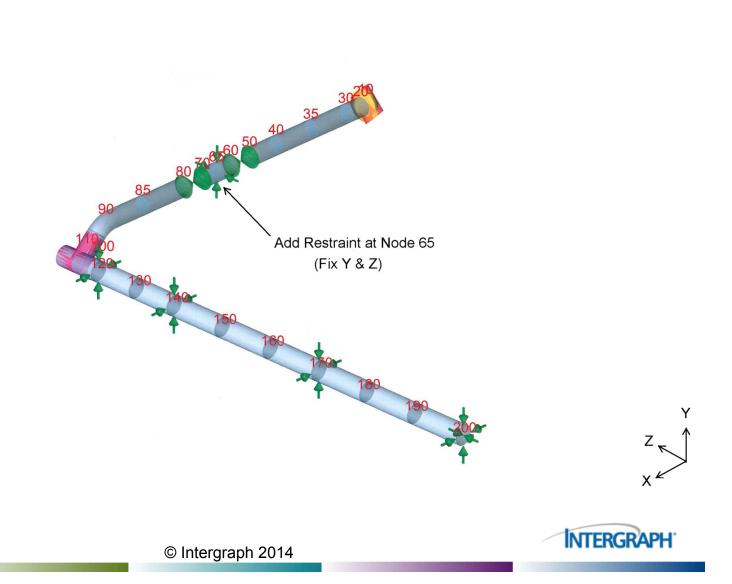
HARMONICS SOLVER		<u> </u>
JOBNAME :		
angle was specified for an i sponse. In a "phased" solut during a system cycle, rangi range from 0.0 to T seconds, are 91 frequency solution tain up to 18 phase solution frequency-phase pairs. User can select them based on the	for this solution because either nput load, or damping has caused ion the maximum response can occu- ng from 0 to 360 degrees (correspond where T is the forcing period (1) as in this job. Each frequency so as. Output cases (99 max) will be as may select frequency-phase pair maximum displacement for each frequency Options User selects frequency/phase pairs CAESAR II selects frequency/phase pairs Return to the CAESAR II Main Menu OK	a phased re- r at any time onding to the /f). There lution can con- built for the s or CAESAR II
	OK	

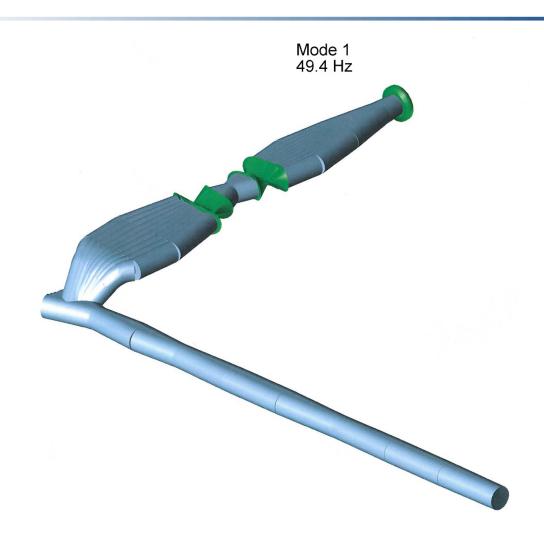
• Allow CAESAR to chose phase angle for each frequency step that results in highest response.


		3 X	43 4	3 🥌 🖻	0.0	2	Q-	Search	n in Sheet			
- #	Home Lay	out	Tables	Charts	Sma	rtArt	Formulas	s Da	ta Ro	eview		~
sert (Chart Insert	[Data		Char	t Quick Layo	uts			Chart Style	s	
AI	F Sparklines	Select	Switch P						h h	6.6		
	A4 ;											
	A	В	C	D	E	F	G	н	1 I	J	K	L
1												
2	CAESAR Force:	900	lbs 0-p									
3	Actual Force:	900	lbs 0-p									
4	Node:	70										
5				ation at Not						k Curves		
6				Frequency	X-Dir	Y-Dir	Z-Dir	Design		Correction	Danger	
7	source row	source tab		Hz		mils p-p				s p-p		
8	19	1		2.0	0.20	3.20	3.00	11.39	22.78	45.55	113.88	
9		2		2.25	0.20	3.20	3.00	10.72	21.44	42.89	107.22	
10		3		2.50	0.20	3.40	3.00	10.16	20.32	40.64	101.60	
1		4		2.75	0.20	3.40	3.00	9.68	19.35	38.71	96.77	
12		5		3.00	0.20	3.40	3.00	9.26	18.51	37.02	92.56	
13		6		3.25	0.20	3.40	3.00	8.88	17.77	35.54	88.85	
14		7		3.50	0.20	3.40	3.20	8.55	17.11	34.22	85.54	
15		8		3.75	0.20	3.40	3.20	8.26	16.52	33.03	82.58	
16		9		4.00	0.20	3.40	3.20	7.99	15.98	31.96	79.90	
17		10		4.25	0.20	3.60	3.20	7.75	15.49	30.98	77.46	
18		11		4.50	0.20	3.60	3.20	7.52	15.05	30.09	75.23	
19		12		4.75	0.20	3.60	3.40	7.32	14.64	29.27	73.18	
20		13		5.00	0.20	3.60	3.40	7.13	14.26	28.51	71.28	
21		14		5.25	0.20	3.80	3.40	6.95	13.91	27.81	69.53	
22		15		5.50	0.20	3.80	3.40	6.79	13.58	27.16	67.89	
23		16		5.75	0.20	3.80	3.60	6.64	13.27	26.55	66.37	
24		17		6.00	0.20	3.80	3.60	6.49	12.99	25.98	64.94	
25		18		6.25	0.20	4.00	3.80	6.36	12.72	25.44	63.60	
26		19		6.50	0.20	4.00	3.80	6.23	12.47	24.93	62.33	
27		20		6.75	0.20	4.20	3.80	6.11	12.23	24.46	61.14	
28		21		7.00	0.20	4.20	4.00	6.00	12.00	24.01	60.02	-
29		22	1	7.25	0.20	4.40	4.20	5.89	11.79	23.58	58.95	
30		23		7.50	0.20	4.40	4.20	5.79	11.59	23.17	57.94	-
31		24		7.75	0.20	4.60	4.40	5.70	11.39	22.79	56.97	
32		25		8.00	0.20	4.60	4.60	5.61	11.21	22.42	56.06	-
33		26		8.25	0.20	4.80	4.60	5.52	11.04	22.07	55.18	-
34		27	1	8.50	0.20	5.00	4.80	5.43	10.87	21.74	54.34	
35 36		28		8.75	0.20	5.20	5.00	5.35	10.71	21.42	53.55 52.78	+

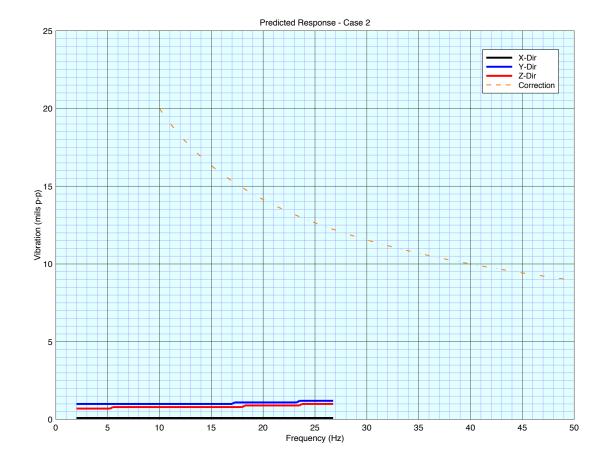
CAESAR Forced Response Output


- First two modes are excited with maximum response at Node 70 in the Y and Z directions.
- Response exceeds "Correction" allowable.


- Amplitude is much higher because force is higher
- Force must be a factor of ~6 lower to meet guidelines



- A better approach is to raise mechanical natural frequencies
- Add support near anti-node of first two modes.


- A better approach is to raise mechanical natural frequencies
- Add support near anti-node of first two modes.

- Forced response no longer needed, but...
- Results are as expected

Conclusions

- Both Thermal and Dynamic Analysis Should Be Done Simultaneously to Optimize Results
- Realistic Boundary Conditions Should Be Applied
- Remember "Old School" Rules
- Designing Based on Forced Response is Risky
 - MNFs vary widely due to fabrication and installation
 - Damping varies widely depending on support types
 - Complexity of forcing function

Conclusions

- Pulsation Control and Resonance Avoidance is Best
- Forced Response can be used to evaluate worst case scenarios
- Also useful for trouble shooting field vibration problems
 - Benchmark Model with Measured MNFs
 - Benchmark Response with Measured Vibration
 - Evaluate Potential Modifications

Questions?

